# Beyond the Flat World: PDE's on Manifolds

A Geodesics Approach

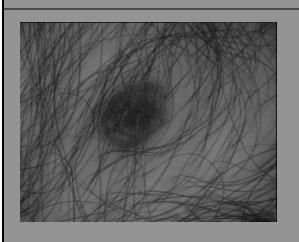
Guillermo Sapiro

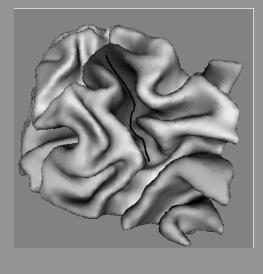
Electrical and Computer Engineering
University of Minnesota
guille@ece.umn.edu

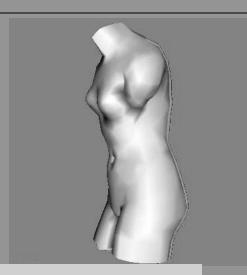
#### Overview

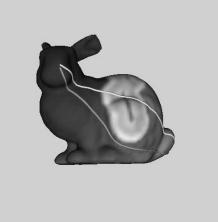
- Motivation
- Background on fast/accurate geodesic computations
- Distance functions and geodesics on implicit hyper-surfaces
- Unorganized points
- Generalized geodesics
- The future and concluding remarks

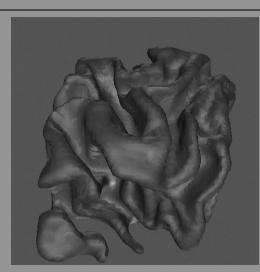
#### **Motivation: A Few Examples**







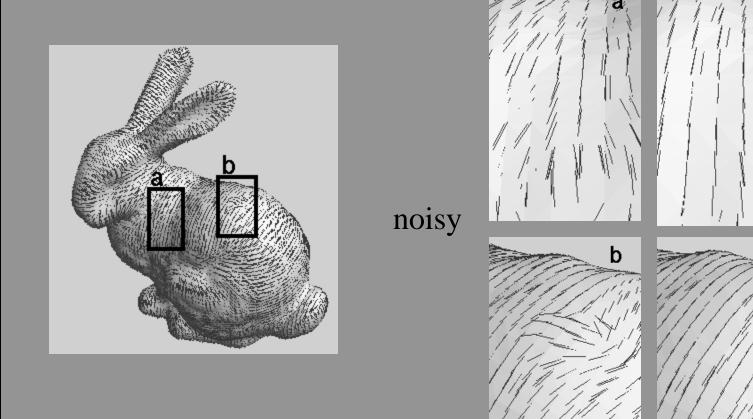






Show me!!!

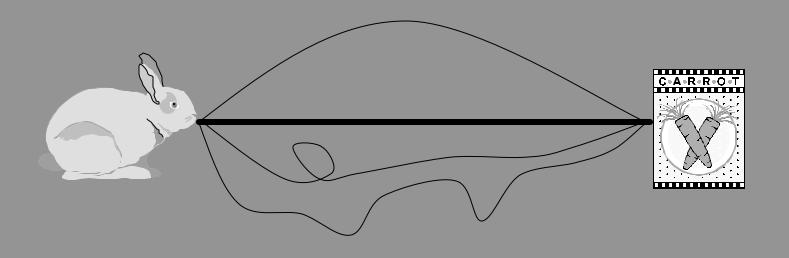
#### Motivation: A Few Examples (cont.)



cleaned

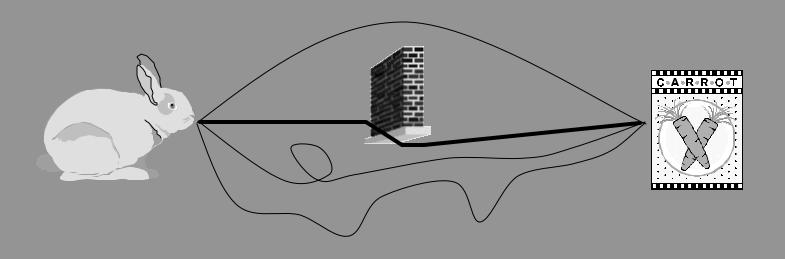
#### Motivation: What is a Geodesic?

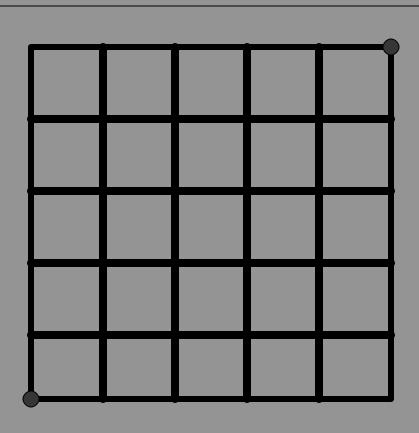
$$d_S^g(p,x) = \inf_C \mathop{\partial}_p^x g(C) ds$$



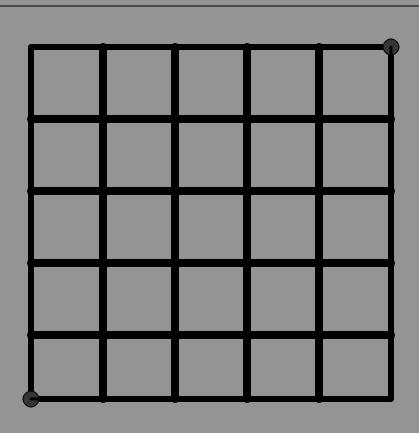
#### Motivation: What is a Geodesic?

$$d_S^g(p,x) = \inf_C \mathop{\partial}_p^x g(C) ds$$

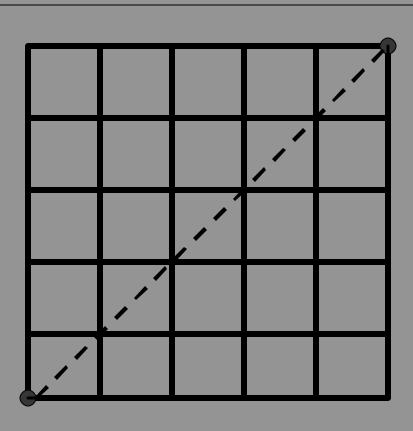




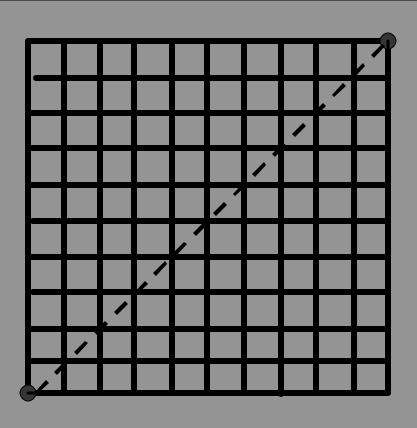
- Complexity: O(n log n)
- Advantage: Works in any dimension and with any geometry (graphs)
- Problems:
  - Not consistent
  - Unorganized points?
  - Noise?
  - Implicit surfaces?



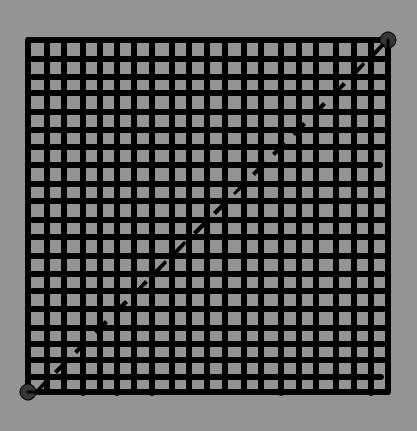
- Complexity: O(n log n)
- Advantage: Works in any dimension and with any geometry (graphs)
- Problems:
  - Not consistent
  - Unorganized points?
  - Noise?
  - Implicit surfaces?



- Complexity: O(n log n)
- Advantage: Works in any dimension and with any geometry (graphs)
- Problems:
  - Not consistent
  - Unorganized points?
  - Noise?
  - Implicit surfaces?



- Complexity: O(n log n)
- Advantage: Works in any dimension and with any geometry (graphs)
- Problems:
  - Not consistent
  - Unorganized points?
  - Noise?
  - Implicit surfaces?



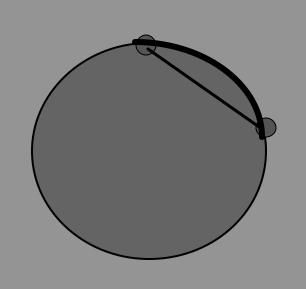
- Complexity: O(n log n)
- Advantage: Works in any dimension and with any geometry (graphs)
- Problems:
  - Not consistent
  - Unorganized points?
  - Noise?
  - Implicit surfaces?

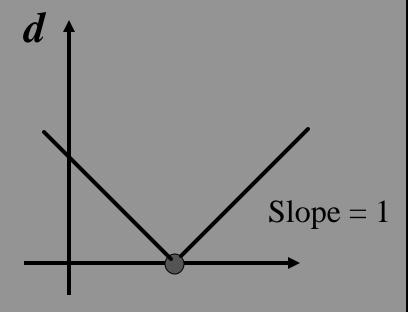
# Background: Distance Functions as Hamilton-Jacobi Equations

- g = weight on the hyper-surface
- The g-weighted distance function between two points p and x on the hyper-surface S is:

$$\left\| \tilde{N}_S d_S^g(p,x) \right\| = g$$

$$\left\|\tilde{N}_S d_S^g(p,x)\right\| = g$$



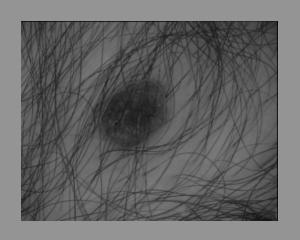


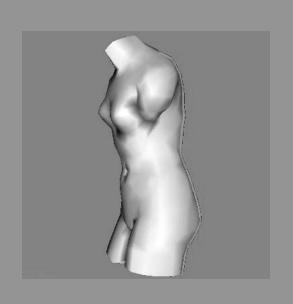
# Background: Computing Distance Functions as Hamilton-Jacobi Equations

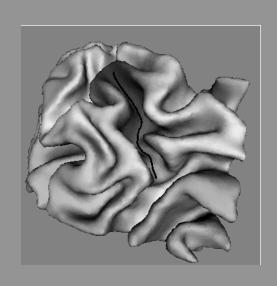
 Solved in O(n log n) by Tsitsiklis, by Sethian, and by Helmsen, only for Euclidean spaces and Cartesian grids

$$\left\| \tilde{N}d^{g}(p,x) \right\| = g$$

 Solved only for acute 3D triangulations by Kimmel and Sethian



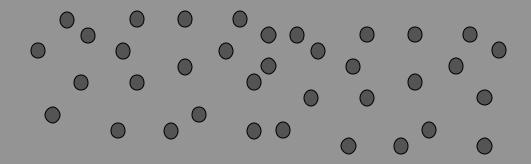




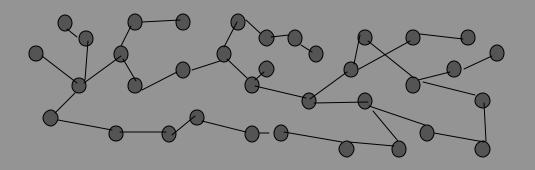
#### The Problem

- How to compute intrinsic distances and geodesics for
  - General dimensions
  - Implicit surfaces
  - Unorganized noisy points (hyper-surfaces just given by examples)

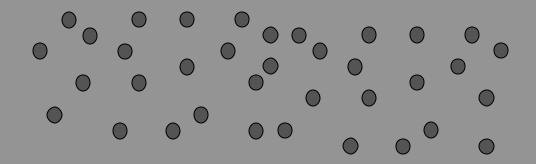
### Intermezzo: Tenenbaum, de Silva, et al...



### Intermezzo: Tenenbaum, de Silva, et al...



#### Intermezzo: Tenenbaum, de Silva, et al...



#### • Problems:

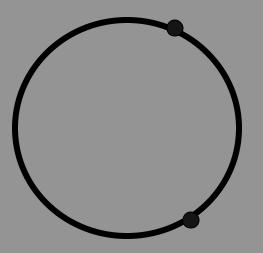
- Doesn't address noisy examples/measurements
- Restriction on sampling density and manifolds
- Uses Dijkestra (back to non consistency)
- Doesn't work for implicit surface representations

#### Our Approach

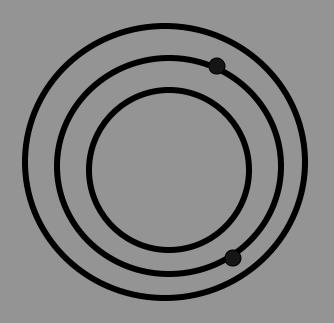
We have to solve

$$\left\| \tilde{N}_S d_S^g(p,x) \right\| = g$$

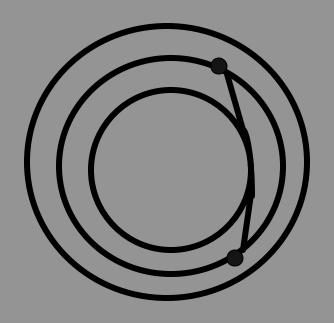
#### **Basic Idea**



#### **Basic Idea**



#### **Basic Idea**

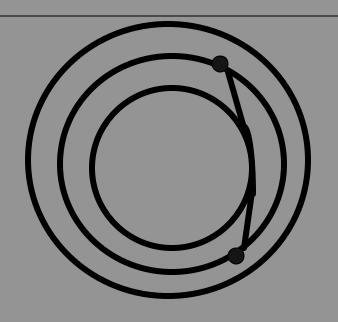


Theorem (Memoli-Sapiro):

(open/closed -- any co-dimension)

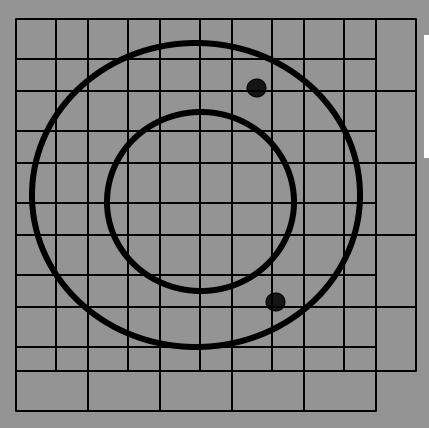
$$\left|d^{g} - d_{S}^{g}\right| \otimes \mathbf{0}$$

#### **Basic idea**



$$egin{array}{c|c} \hat{l} h^{1/2} & ext{general} \ d^g - d^g_S & \hat{l} h & ext{local analytic} \ \hat{l} h^g, g > 1 & ext{"smart" metric} \end{array}$$

#### Why is this good?



$$\left\|\tilde{N}_S d_S^g(p,x)\right\| = g$$

ß

$$\left\| \tilde{N} d^g(p, x) \right\| = g$$

#### Implicit Form Representation

S = level - set of Y:  $\mathbb{R}^n \otimes \mathbb{R} = \{x : Y(x) = 0\}$ 

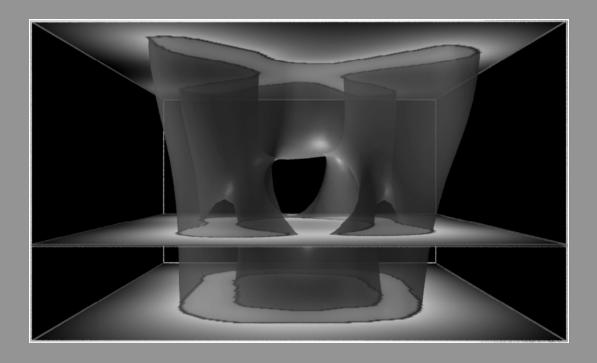


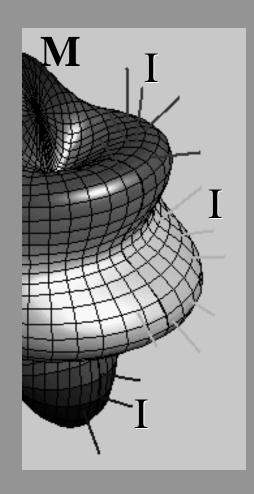
Figure from G. Turk

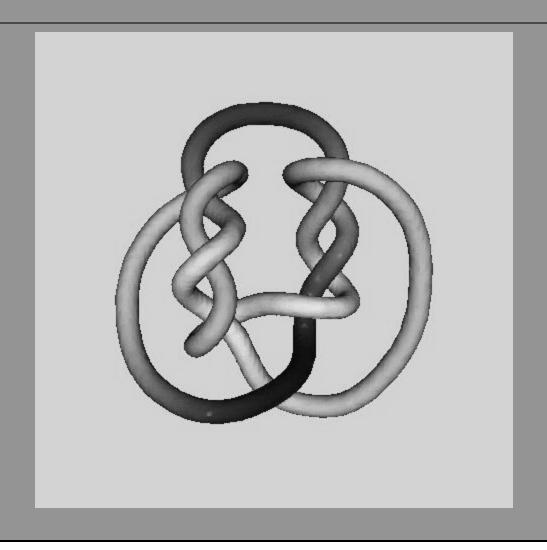
#### **Data extension**

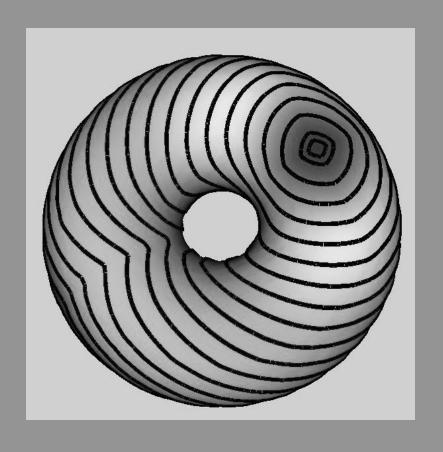
I:M®R

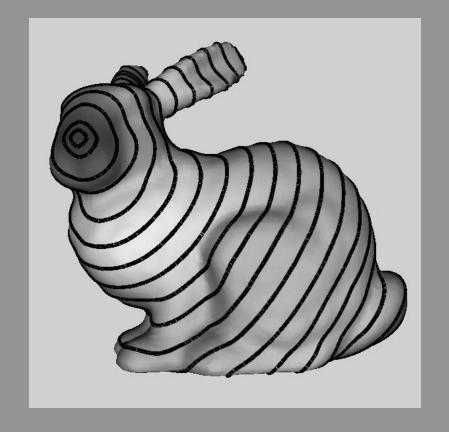
• Embed M:

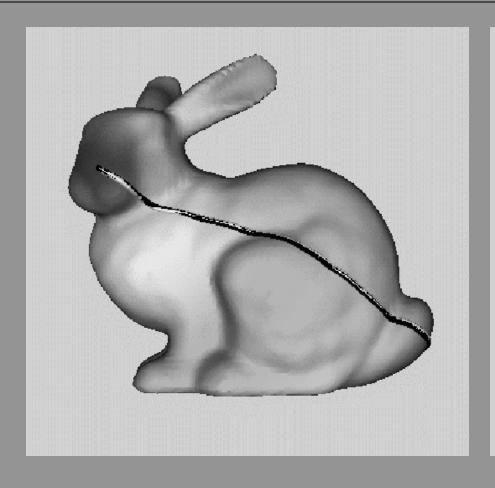
• Extend I outside M:



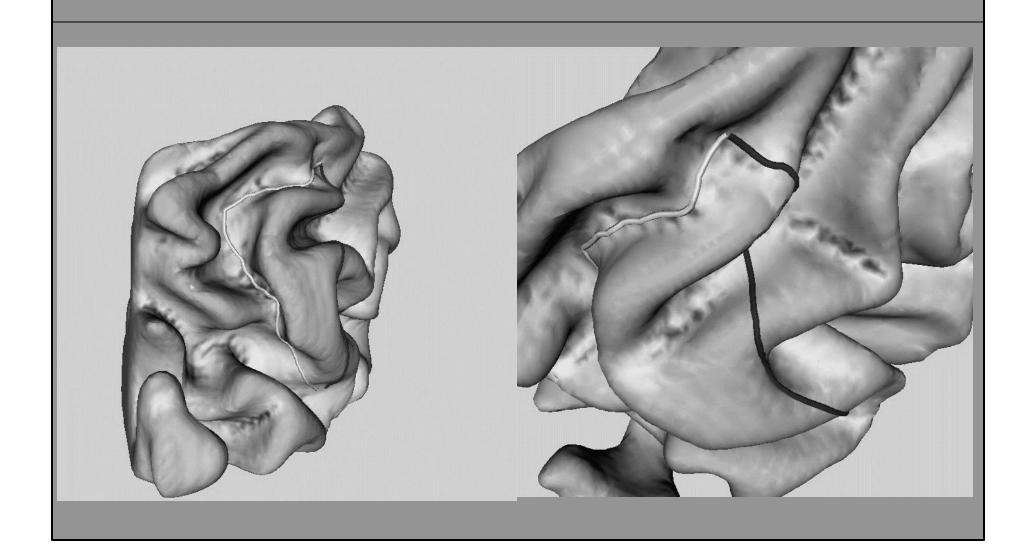






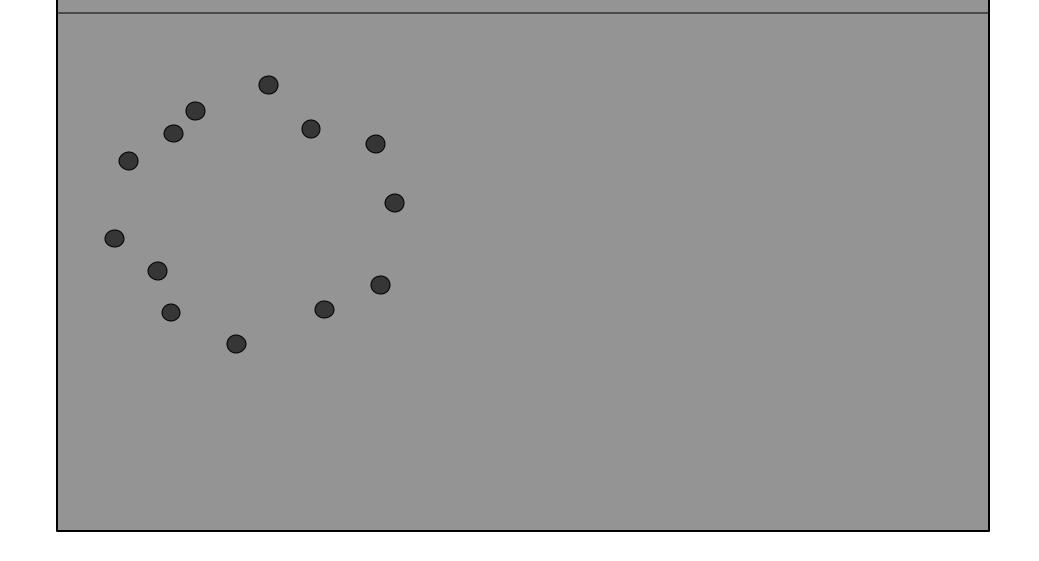




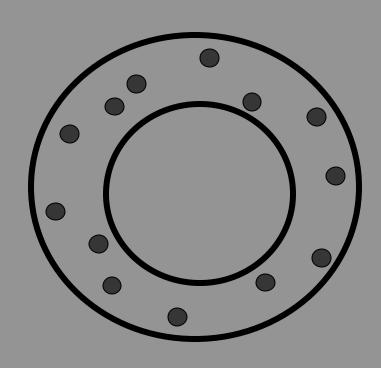




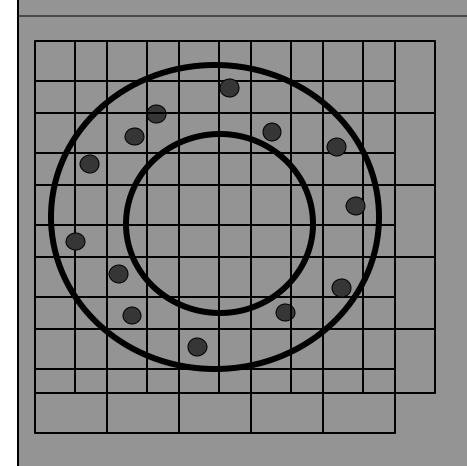
### **Unorganized points**

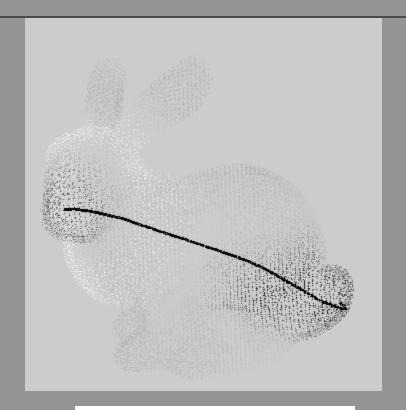


#### **Unorganized points (cont.)**



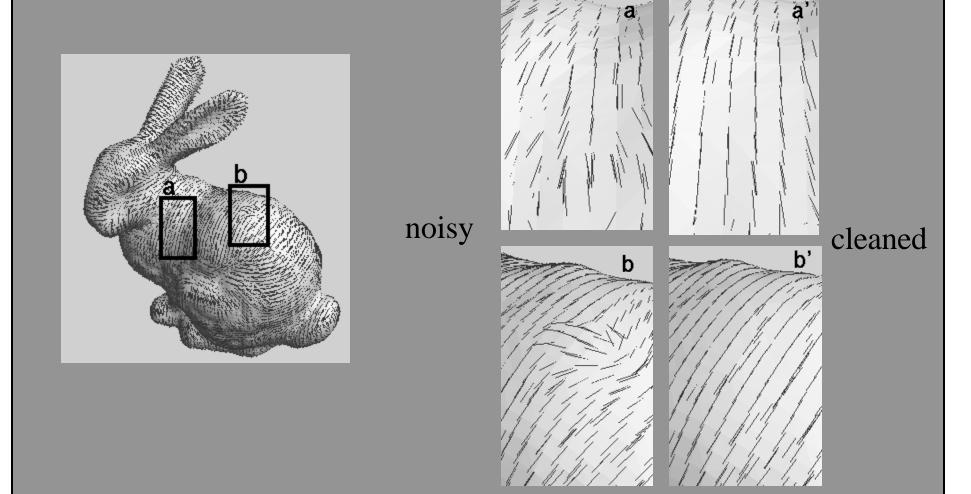
### **Unorganized points**





$$\left|d^{g} - d_{S}^{g}\right|_{h,N} \mathbb{Q}$$

### Is this a geodesic?



### Generalized geodesics: Harmonic maps

 Find a smooth map from two manifolds (M,g) and (N,h) such that

$$\min_{I:M \otimes N} \left\| \widetilde{\mathbf{N}}_M I \right\|^p dvol_M$$

#### **Examples**

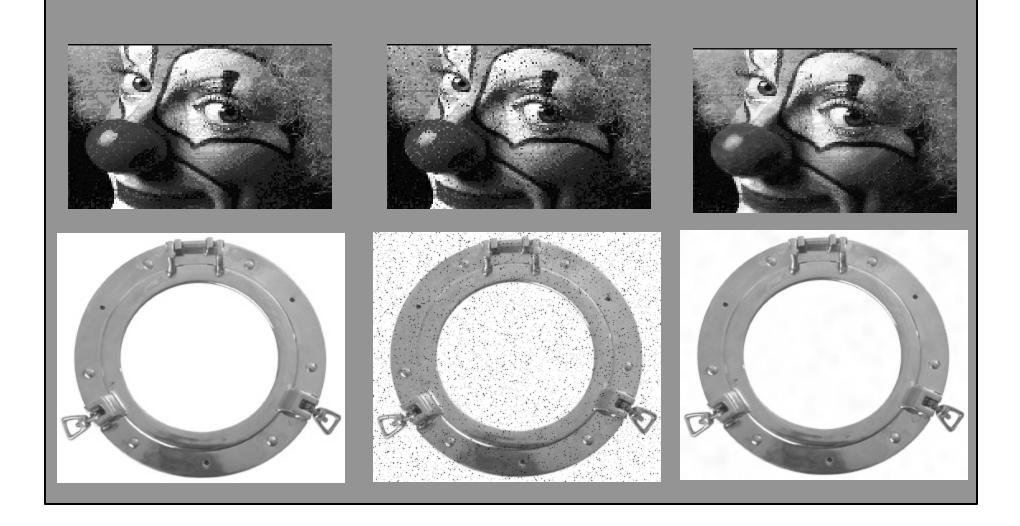
M is an Euclidean space and N the real line

$$|\mathbf{D} \ \boldsymbol{I} = \boldsymbol{0}|$$

• M = [0,1], geodesics!

$$\frac{\P^2I}{\P t^2} + A_N(I) < \tilde{N}_M I, \tilde{N}_M I >= 0$$

### **Color Image Enhancement**



## Generalized geodesics: Harmonic maps

- How we implement this?
  - Consider M and N defined in implicit form.

#### Heat flow on the plane







#### **Embedding the domain surface**

- Example: I:M->R
  - A map from a generic domain surface onto the real line

$$\min_{I:M \otimes R} \left\| \widetilde{\mathbf{N}}_M I \right\|^2 dvol_M$$

$$\frac{\P \quad I}{\P \quad t} = D_M I$$

## Embedding the domain surface (cont.)

$$\left\| \mathbf{\tilde{0}} \right\| \mathbf{\tilde{N}}_{M} I \right\|^{2} dvol_{M} = \mathbf{\tilde{0}} \| P_{\mathbf{\tilde{N}Y}} \mathbf{\tilde{N}} I \|^{2} dvol_{M}$$

$$= \mathbf{\tilde{0}} \| P_{\mathbf{\tilde{N}Y}} \mathbf{\tilde{N}} I \|^{2} d(\mathbf{Y}) \| \mathbf{\tilde{N}Y} \| d\mathbf{X}$$

$$= \mathbf{\tilde{0}} \| P_{\mathbf{\tilde{N}Y}} \mathbf{\tilde{N}} I \|^{2} d(\mathbf{Y}) \| \mathbf{\tilde{N}Y} \| d\mathbf{X}$$

# Embedding the domain surface (cont.)

 The gradient descent flow: Heat flow on intrinsic surfaces

 All the computations are done in the Cartesian grid!

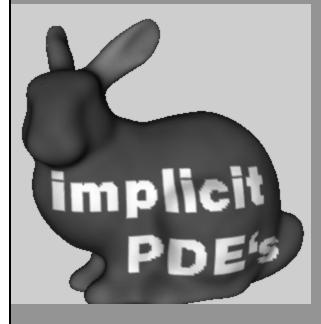
#### **Framework**

If embedding with distance function:

Compare with planar case:

$$\left| \frac{\partial \mathbf{I}}{\partial \mathbf{t}} = \operatorname{div}(\nabla \mathbf{I}) = \Delta \mathbf{I} \right|$$

#### **Example: intrinsic heat flow**







#### L1 denoising on implicit surfaces

$$\left| \int_{M} \|\nabla_{M} I\| \, ds = \int_{M} \|P_{\nabla \Psi} \nabla I\| \, ds \right|$$

$$= \int_{R^{3}} \|P_{\nabla \Psi} \nabla I\| \, d(\Psi) \|\nabla \Psi\| \, dx$$

$$\left| \frac{\partial \mathbf{I}}{\partial \mathbf{t}} = \frac{1}{\|\nabla \mathbf{\Psi}\|} \operatorname{div} \left( \frac{P_{\nabla \mathbf{\Psi}} \nabla I}{\|P_{\nabla \mathbf{\Psi}} \nabla I\|} \|\nabla \mathbf{\Psi}\| \right) \right|$$

#### L1 denoising on implicit surfaces

$$\frac{\partial \mathbf{I}}{\partial \mathbf{t}} = \operatorname{div}\left(\frac{P_{\nabla \Psi} \nabla I}{\|P_{\nabla \Psi} \nabla I\|}\right)$$

intrinsic

$$\frac{\partial \mathbf{I}}{\partial \mathbf{t}} = \operatorname{div}\left(\frac{\nabla I}{\|\nabla I\|}\right)$$

planar

### **Example: L1 denoising with constraints**







### Unit vector/color denoising on implicit surfaces

 I is a map from the 3D surface to the 3D unit sphere

$$\frac{\P\mathbf{I}}{\P\mathbf{t}} = \frac{1}{\|\tilde{\mathbf{N}}\mathbf{Y}\|} \mathbf{div}_{\boldsymbol{\xi}}^{\mathbf{e}} \frac{P_{\tilde{\mathbf{N}}\mathbf{Y}}\tilde{\mathbf{N}}\boldsymbol{I}}{\|P_{\tilde{\mathbf{N}}\mathbf{Y}}\tilde{\mathbf{N}}\boldsymbol{I}\|} \|\tilde{\mathbf{N}}\mathbf{Y}\|_{\dot{\boldsymbol{\xi}}}^{\ddot{\mathbf{o}}} + \mathbf{I} \|P_{\tilde{\mathbf{N}}\mathbf{Y}}\tilde{\mathbf{N}}\boldsymbol{I}\|$$

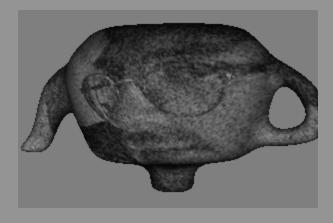
### **Example: Chroma denoising on a surface**

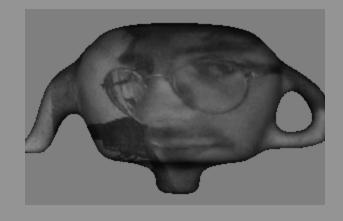


original

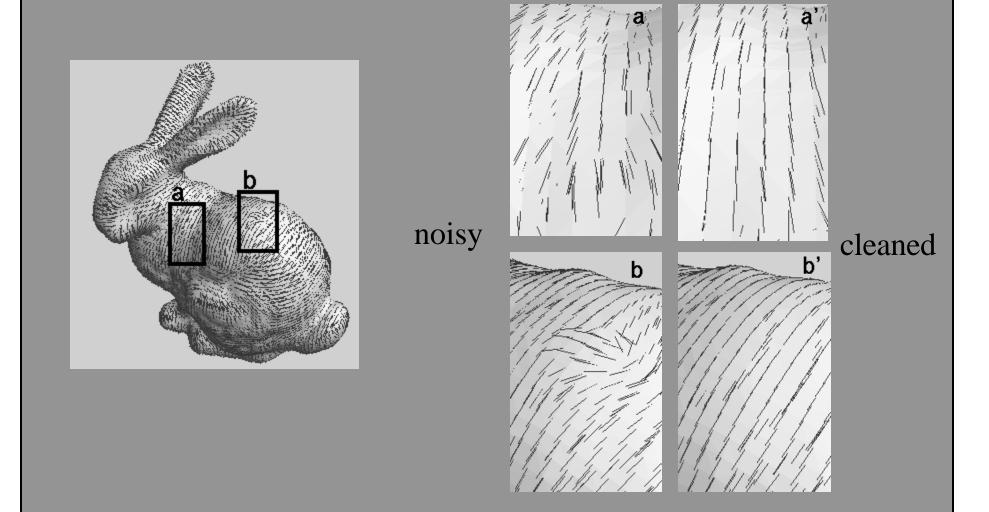
noisy

enhanced

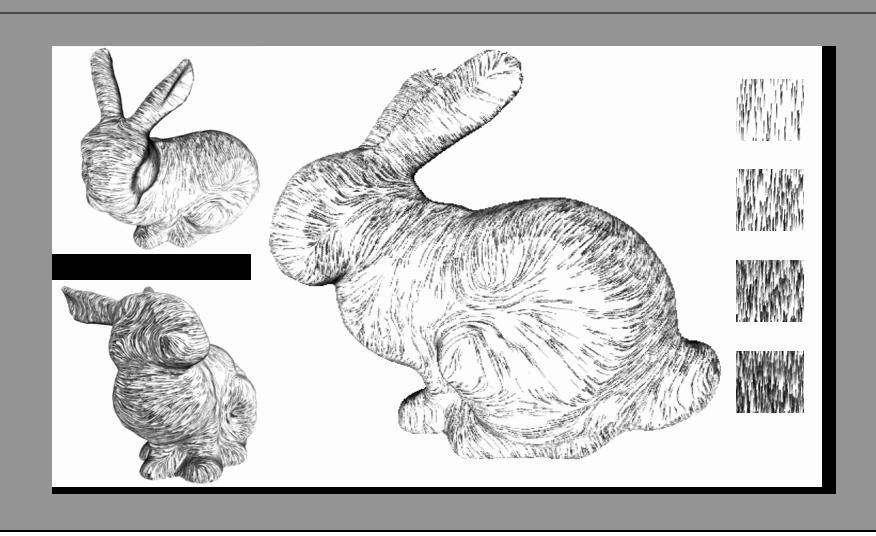




#### **Example: Direction denoising**



#### Application (with G. Gorla and V. Interrante)



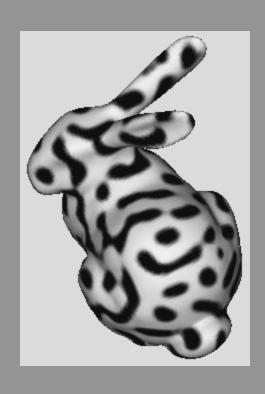
### Pattern formation on implicit 3D surfaces

Follows Turing, Kass-Witkin, Turk

$$\frac{\P a}{\P t} = f(a,b) + a D_M a_{\frac{\tilde{1}}{\tilde{1}}}^{\ddot{u}} = \frac{1}{\P t} = f(a,b) + a \frac{1}{\|\tilde{N}Y\|} \operatorname{div}(P_{\tilde{N}Y} I \|\tilde{N}Y\|)$$

$$\frac{\P b}{\P t} = g(a,b) + b D_M b_{\frac{\tilde{1}}{\tilde{1}}}^{\ddot{u}} = \frac{1}{\P t} = g(a,b) + b \frac{1}{\|\tilde{N}Y\|} \operatorname{div}(P_{\tilde{N}Y} I \|\tilde{N}Y\|)$$

### Examples



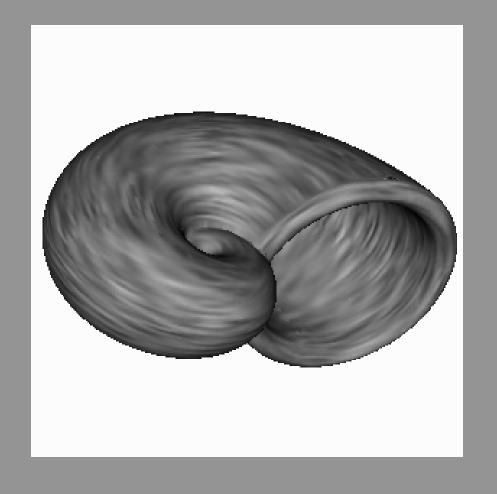


#### Vector field visualization

• I is random noise, diffused in direction v

$$\begin{cases} \frac{\partial I}{\partial t} = \operatorname{div}(\mathbf{A}\nabla I) \\ \mathbf{A} = \vec{v}^T \vec{v} \end{cases} \Rightarrow \begin{cases} \frac{\partial I}{\partial t} = \frac{1}{\|\nabla \Psi\|} \operatorname{div}(\mathbf{A} \mathbf{P}_{\nabla \Psi} \nabla \mathbf{I} \|\nabla \Psi\|) \\ \mathbf{A} = \vec{v}^T \vec{v} \end{cases}$$

# Vector field visualization (e.g., principal directions)



#### **Embedding the target manifold**

• I:M->N

$$N = level - set of F = \{x : F(x) = 0\}$$

$$\operatorname{\mathsf{min}}_{I:M\,\mathbb{R}\,\{\mathcal{F}=0\}} \left\| \widetilde{\mathcal{N}}_M I \right\|^p dvol_M$$

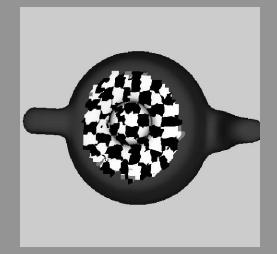
$$\left|\frac{\int I}{\int I} = D_M I + A_{\{F=0\}}(I) < \tilde{N}_M I, \tilde{N}_M I > \right|$$

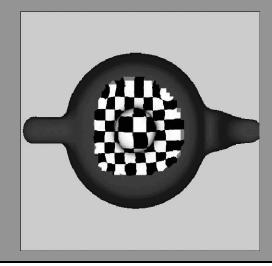
## Embedding the target manifold (cont.)

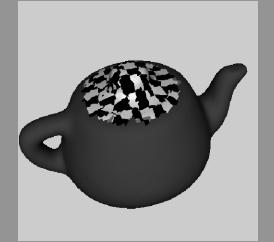
$$\left\| \min_{\mathbb{R}^k \otimes \{\mathcal{F} = 0\}} \| \tilde{\mathbb{N}}_M \|^2 dx \right\|$$

$$\left|\frac{\P I}{\P t} = ? I + \mathop{\epsilon}\limits_{e}^{e} \mathop{\dot{a}}\limits_{k} H_{F} \left\langle \frac{\P I}{\P x_{k}}, \frac{\P I}{\P x_{k}} \right\rangle \mathop{\dot{\dot{e}}}\limits_{\acute{\varrho}}^{\ddot{o}} \|\tilde{N}F\| \right|$$

#### Texture mapping denoising









### Texture mapping denoising





### Complete Implicit Surfaces Representation

 Domain and target are implicitly represented: Simple Cartesian numerics

$$\frac{\P I}{\P t} = \text{div}(P_{\tilde{N}?}\tilde{N}I) + \mathop{\xi}\limits_{\tilde{e}} \mathop{\dot{a}}\limits_{k} H_{F} \left\langle \frac{\P I}{\P x_{k}}, \frac{\P I}{\P x_{k}} \right\rangle \mathop{\dot{\tilde{e}}}\limits_{\tilde{\varrho}}^{\tilde{o}} \|\tilde{N}F\|$$

 Extended also to sub-manifolds via intersection of implicit surfaces

#### **Concluding remarks**

 A general computational framework for distance functions, geodesics, and generalized geodesics

Implicit hyper-surfaces and points clouds

#### **Thanks**

- F. Memoli and G. Sapiro, "Fast computation of weighted distance functions and geodesics on implicit hyper-surfaces," *Journal of Computational Physics* 173:2, pp. 730-764, November 2001.
- F. Memoli and G. Sapiro, "Distance functions and geodesics on point clouds," Dec. 2002.
- B. Tang, G. Sapiro, and V. Caselles, "Color image enhancement via chromaticity diffusion," *IEEE Trans. Image Processing* 10, pp. 701-707, May 2001.
- B. Tang, G. Sapiro, and V. Caselles, "Diffusion of general data on non-flat manifolds via harmonic maps theory: The direction diffusion case," *Int. Journal Computer Vision* 36:2, pp. 149-161, February 2000.
- M. Bertalmio, L. T. Cheng, S. Osher, and G. Sapiro, "Variational problems and partial differential equations on implicit surfaces," *Journal of Computational Physics* 174:2, pp. 759-780, 2001.
- A. Bartesaghi and G. Sapiro, "A system for the generation of curves on 3D brain images," *Human Brain Mapping* 14:1, pp. 1-15, 2001.